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In this paper we provide a new methodology using an exoatmo-

spheric target of opportunity seen in a satellites borne sensor’s field

of view to estimate the sensor’s biases simultaneously with the state

of the target. Each satellite is equipped with an Infra Red (IR) sen-

sor that provides the Line Of Sight (LOS) measurements azimuth

and elevation to the target. The measurements provided by these

sensors are assumed to be noisy but perfectly associated, i.e., it is

known perfectly that they belong to the same target. The evaluation

of the Cramér-Rao Lower Bound (CRLB) on the covariance of the

bias estimates, and the statistical tests on the results of simulations

show that both the target trajectory and the biases are observable

and this method is statistically efficient.
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I. INTRODUCTION

A space-based tracking system provides many ad-

vantages for missile defense as well as space situational

awareness as a part of a system of systems that con-

tribute to an overall picture. It can cover gaps in ter-

restrial radar coverage and expand the capabilities of a

Ballistic Missile Defense System (BMDS), allow inter-

ceptors to engage enemy missiles earlier in their tra-

jectories, discriminate between warheads and decoys,

and provide warhead hit assessment. However, systemic

errors in sensing systems hinder accurate threat identi-

fication and target state estimation, and, in this way,

the space-based tracking systems present some unique

challenges [7].

Multisensor systems use fusion of data from multi-

ple sensors to form accurate estimates of a target track.

To fuse multiple sensor data the individual sensor data

must be expressed in a common reference frame. A

problem encountered in multisensor systems is the pres-

ence of errors due to sensor bias. Bias error in a space-

craft and sensors can result from a number of different

sources [8], including:

² Errors in spacecraft position (spacecraft navigation
bias).

² Errors in spacecraft attitude (wheel assembly con-
troller error, coordinate system translation round-off

error).

² Errors in sensor calibration (residual pointing error,
degradation of sensor alignment).

² Errors in timing caused by bias in the clocks of the
sensors.

In [9] time varying bias estimation based on a non-

linear least squares formulation and the singular value

decomposition using truth data was presented. However,

this work did not discuss the CRLB for bias estimation.

An approach using maximum a posteriori (MAP) data

association for concurrent bias estimation and data as-

sociation based on sensor-level track state estimates was

proposed in [10] and extended in [11].

For angle-only sensors, imperfect registration leads

to LOS angle measurement biases in azimuth and ele-

vation. If not corrected, the registration errors can se-

riously degrade the global surveillance system perfor-

mance by increasing the tracking errors and even intro-

ducing ghost targets. In [6] the effect of sensor and tim-

ing bias error on the tracking quality of a space-based IR

tracking system that utilizes a Linearized Kalman Filter

(LKF) for the highly non-linear problem of tracking a

ballistic missile was presented. This was extended in [7]

by proposing a method of using stars observed in the

sensor background to reduce the sensor bias error. In

[4] simultaneous sensors bias and targets position esti-

mation using fixed passive sensors was proposed. A so-

lution to the related observability issues discussed in [4]
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TABLE I

Symbols associated with coordinate systems and measurements:

Symbol Definition

r The range from the sensor to the target

®,² Azimuth and Elevation angles

b Bias vector

Á,Ã,½ Roll, pitch and yaw

! Orientation of a sensor

T A rotation matrix

x,y,z Target Positions in Cartesian coordinates

_x, _y, _z Target velocities in Cartesian coordinates

μ Parameters vector

z Measurements vector

»,´,³ Sensor Locations

R Covariance matrix

H Jacobian matrix

F Transition matrix

is proposed in [5] using space based sensors. In [3] a si-

multaneous target state and passive sensors bias estima-

tion was proposed. However, this work did not discuss

the statistical efficiency of the estimates. The new bias

estimation algorithm developed in this paper is validated

using a hypothetical scenario created using System Tool

Kit (STK) [1]. The tracking system consists of two op-

tical sensors (space based) tracking a ballistic target. We

assume the sensors are synchronized, their locations are

known, and the data association is correct and we esti-

mate their orientation biases (assumed constant during

the entire tracking time) while simultaneously estimat-

ing the state of the target (position and velocity). We

evaluate the Cramér-Rao lower bound (CRLB) on the

covariance of the bias estimates, which is the quantifi-

cation of the available information on the sensor biases,

and show via statistical tests that the estimation is sta-

tistically efficient–it meets the CRLB.

Section II presents the problem formulation and

solution in detail. Section III describes the simulations

performed and gives the results. Finally, Section IV

discusses the conclusions and future work.

II. PROBLEM FORMULATION AND ANNOTATIONS

A. List of Symbols and Acronyms

Table I is a list of the symbols used throughout the

paper. In many sections, symbols are given additional

subscripts or superscripts to make them more specific.

B. Problem Formulation

In order to fuse measurements from multiple sen-

sors, all the sensors measurements must be expressed

with respect to a common frame of reference. The fun-

damental frame of reference used in this paper is the

Earth Centered Inertial (ECI) Coordinate System.

The sensor reference frame associated with sensor

platform s (measurement frame of the sensor) is defined

by the orthogonal set of unit vectors (e»s ,e´s ,e³s). The

origin of the measurement frame of the sensor is a

Fig. 1. Optical sensor coordinate system with the origin in the

center of the focal plane.

translation of the ECI origin, and its axes are rotated

with respect to the ECI axes. The rotation between these

frames can be described by a set of Euler angles. We

will refer to these angles Ás+Á
n
s , ½s+ ½

n
s , Ãs+Ã

n
s of

sensor s, as roll, pitch and yaw respectively, where Áns
is the nominal roll angle, Ás is the roll bias, etc.

Each angle defines a rotation about a prescribed axis,

in order to align the sensor frame axes with the ECI

axes. The xyz rotation sequence is chosen, which is

accomplished by first rotating about the x axis by Áns ,

then rotating about the y axis by ½ns , and finally rotating

about the z axis by Ãns . The rotations sequence can be

expressed by the matrices

Ts(Ã
n
s ,½

n
s ,Á

n
s ) = Tz(Ã

n
s )Ty(½

n
s )Tx(Á

n
s ) (1)

The explicit expressions of the elements of (1) can be

found in [3]. Assume there are NS synchronized passive

sensors, with known positions in ECI coordinates,

»s(k) = [»s(k),´s(k),³s(k)]
0, s= 1,2, : : : ,NS ,

k = 0,1,2, : : : ,K (2)

where K is the final tracking time. The sensors get

biased noisy measurements for tracking a single target

at unknown positions

xp(k) = [x(k),y(k),z(k)]
0 (3)

also in ECI coordinates. With the previous convention,

the operations needed to transform the position of the

target location expressed in ECI coordinates into the

sensor s coordinate system (based on its nominal orien-

tation) is

xns (k) = T(!s(k))(xp(k)¡ »s(k)) s= 1,2, : : : ,NS ,

k = 0,1,2, : : : ,K (4)

where !s(k) = [Á
n
s (k),½

n
s (k),Ã

n
s (k)]

0 is the nominal ori-
entation of sensor s, T(!s(k)) is the appropriate rota-
tion matrix, and the translation (xp(k)¡ »s(k)) is the dif-
ference between the vector position of the target and

the vector position of the sensor s, both expressed in

ECI coordinates. The superscript “n” in (8) indicates

that the rotation matrix is based on the nominal sensor

orientation.
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Each passive sensor provides LOS measurements of

the target position. As shown in Figure 1, the azimuth

angle ®s(k) is the angle in the sensor xz plane between

the sensor z axis and the line of sight to the target,

while the elevation angle ²s(k) is the angle between the

line of sight to the target and its projection onto the xz

plane, i.e.,

·
®s(k)

²s(k)

¸
=

26664
tan¡1

μ
xs(k)

zs(k)

¶
tan¡1

Ã
ys(k)p

x2s (k)+ z
2
s (k)

!
37775 (5)

The model for the biased noise-free LOS measurements

is then ·
®bs (k)

²bs (k)

¸
=

·
h1(x(k),»s(k),!s(k),bs)

h2(x(k),»s(k),!s(k),bs)

¸
¢
=h(x(k),»s(k),!s(k),bs) (6)

where h1 and h2 denote the sensor Cartesian coordinates-

to-azimuth/elevation angle mapping that can be found

by inserting (8) and (5) into (6)·
h1(x(k),»s(k),!s(k),bs)

h2(x(k),»s(k),!s(k),bs)

¸

=

26664
tan¡1

μ
xbs (k)

zbs (k)

¶
tan¡1

Ã
ybs (k)p

(xbs (k))
2 + (zbs (k))

2

!
37775 (7)

and

xbs (k) = T(!
b
s (k))(xp(k)¡ »s(k)) s= 1,2, : : : ,NS,

k = 0,1,2, : : : ,K, (8)

where

!bs (k) = [Á
n
s (k)+Ás,½

n
s (k) + ½s,Ã

n
s (k) +Ãs]

0 (9)

is the biased orientation of sensor s, and the bias vector

of sensor s is
bs = [Ás,½s,Ãs]

0 (10)

At time k, each sensor provides the noisy LOS

measurements

zs(k) = h(xp(k),»s(k),!s(k),bs) +ws(k) (11)

Let z be an augmented vector consisting of the batch
stacked measurements from all the sensors up to time K

z= [z1(1),z2(1), : : : ,zNS (1), : : : ,z1(K),z2(K), : : : ,zNS (K)]
(12)

and
ws(k) = [w

®
s (k),w

²
s(k)]

0 (13)

The measurement noises ws(k) are zero-mean, white

Gaussian with

Rs =

·
(¾®s )

2 0

0 (¾²s)
2

¸
s= 1,2, : : : ,NS (14)

and are assumed mutually independent. The problem

is to estimate the bias vectors for all sensors and the

state vector (position and velocity) of the target of

opportunity, i.e.,

μ = [x(K),y(K),z(K), _x(K), _y(K), _z(K),b01, : : : ,b
0
NS
]0

(15)

from

z= h(μ) +w (16)

where

h(μ) = [h11(μ)
0,h21(μ)

0, : : : ,hNS1(μ)
0, : : : ,h1K(μ)

0,h2K(μ)
0,

: : : ,hNSK(μ)
0]0 (17)

w= [w1(1)
0,w2(1)

0, : : : ,wNS (1)
0, : : : ,w1(K)

0,w2(K)
0,

: : : ,wNS (K)
0]0 (18)

and the covariance of the stacked process noise (18) is

the (NsK £NsK) block-diagonal matrix

R =

266664
R1 0 ¢ ¢ ¢ 0

0 R2 ¢ ¢ ¢ 0

...
...

. . .
...

0 ¢ ¢ ¢ 0 RNS

377775 (19)

C. Space target dynamics

The state space model for a noiseless discrete-time

system1 is of the general form

x(k+1) = f[x(k),u(k)] k = 0,1,2, : : : ,K ¡ 1 (20)

With small time steps (· 10s) we can approximate
the motion model with the discrete-time dynamic equa-

tion

x(k+1) = Fx(k) +Gu(k) (21)

where

x(k) = [x(k),y(k),z(k), _x(k), _y(k), _z(k)]0,

k = 0,1,2, : : : ,K (22)

is the 6 dimensional state vector at time k, F is the state

transition matrix, and u is a known input representing

the gravitational effects acting on the target (given in

(25)). The state transition matrix for a target with accel-

eration due to gravity is

F =

26666666664

1 0 0 ¢t 0 0

0 1 0 0 ¢t 0

0 0 1 0 0 ¢t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777777775
(23)

1Since we are dealing with exoatmospheric motion it is reasonable to

assume that it is noiseless.

STATISTICAL EFFICIENCY OF SIMULTANEOUS TARGET STATE AND SENSOR BIAS ESTIMATION 5



and the known input gain matrix (multiplying the ap-

propriate components of the gravity vector) is

G =

26666666664

¢t2=2 0 0

0 ¢t2=2 0

0 0 ¢t2=2

¢t 0 0

0 ¢t 0

0 0 ¢t

37777777775
(24)

where ¢t is the sampling interval. The gravity term is

given by

u(k) = g
xp(k)

a(xp(k))
(25)

where xp is the position part of the state x in (22),

g = 9:8 m/s2, and

a=
p
x(k)2 + y(k)2 + z(k)2 (26)

is the distance from the target to the origin of the

coordinates system. For simplicity we assume g to

be constant. The ratio xp=a yields the time-varying

components of the gravity acting on the target and

provides the scaling factor for the gravity term. Note

that in view of (25), the state model (21) is not linear.

We shall obtain the maximum likelihood (ML) esti-

mate of the augmented parameter vector (15) consisting

of the (unknown) target position, velocity and sensor

biases, by maximizing the likelihood function (LF) of

μ based on z
¤(μ;z) = p(z j μ) (27)

where

p(z j μ) = j2¼Rj¡1=2 exp(¡ 1
2
[z¡h(μ)]0R¡1[z¡h(μ)])

(28)

and h is defined in (17)
The ML estimate (MLE) is then

μ̂(z)ML = argmax
μ
¤(μ;z) (29)

In order to find the MLE, one has to solve a nonlin-

ear least squares problem. This will be done using a

numerical search via the Batch Iterated Least Squares

(ILS) technique.

D. Bias Estimability

Intuitively, the observability of a system guarantees

that the sensor measurements provide sufficient infor-

mation for estimating the unknown parameters. As dis-

cussed in [3] the two requirement for bias estimability

are:

First requirement for bias estimability. Each sensor pro-
vides a two-dimensional measurement (the two LOS

angles to the target) at time K. We assume that each

sensor sees the target at all the times 0,1,2, : : : ,K. Stack-

ing together all the measurements results in an over-

all measurement vector of dimension 2KNS. Given that

the position, velocity of the target and bias vectors of

each sensor are three-dimensional, and knowing that the

number of equations (size of the stacked measurement

vector) has to be at least equal to the number of param-

eters to be estimated (target state and biases), we must

have

2KNS ¸ 3NS +6 (30)

This is a necessary condition but not sufficient because

(29) has to have a unique solution, i.e., the parameter

vector has to be estimable. This is guaranteed by the

second requirement.

Second requirement of bias estimability. This is the in-

vertibility of the Fisher Information Matrix (FIM). In

order to have parameter observability, the FIM must be

invertible. If the FIM is not invertible (i.e., it is singu-

lar), then the CRLB (the inverse of the FIM) will not

exist–the FIM will have one or more infinite eigenval-

ues, which means total uncertainty in a subspace of the

parameter space, i.e., ambiguity [2].

For the example of bias estimability discussed in

the sequel, to estimate the biases of 2 sensors (6 bias

components) and 6 target components (3 position and

3 velocity components), i.e., the search is in an 12-

dimensional space in order to meet the necessary re-

quirement (30). As stated previously, the FIM must be

invertible, so the rank of the FIM has to be equal to the

number of parameters to be estimated (6+6 = 12, in the

previous example). The full rank of the FIM is a nec-

essary and sufficient condition for estimability. There

exists, however, a subtle unobservability for this exam-

ple that will necessitate the use of more measurements

than the strict minimum number of measurements given

by (30).

E. Iterated Least Squares for Maximization of the LF of
μ

Given the estimate μ̂j after j iterations, the batch ILS
estimate after the (j+1)th iteration will be

μ̂j+1 = μ̂j +[(Hj)0R¡1Hj]¡1(Hj)0R¡1[z¡h(μ̂j)] (31)

where

h(μ̂j) = [h11(μ̂
j)0,h21(μ̂

j)0, : : : ,hNS1(μ̂
j)0, : : : ,h1K(μ̂

j)0,

h2K(μ̂
j)0, : : : ,hNSK(μ̂

j)0] (32)

where

Hj =
@h(μj)

@μ

¯̄̄̄
μ=μ̂j

(33)

is the Jacobian matrix of the vector consisting of the

stacked measurement functions (32) w.r.t. (15) evaluated

at the ILS estimate from the previous iteration j. In this

case, the Jacobian matrix is, with the iteration index

omitted for conciseness,

H = [H11 H21 HNS1 ¢ ¢ ¢H1K H2K HNSK]
0 (34)
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where

Hsk =

26664
h1s(k)

@x(k)

h1s(k)

@y(k)

h1s(k)

@z(k)

h1s(k)

@ _x(k)

h1s(k)

@ _y(k)

h1s(k)

@ _z(k)

h1s(k)

@b®1

h1s(k)

@b²1

h1s(k)

@b½1
¢ ¢ ¢ h1s(k)

@b®NS

h1s(k)

@b²NS

h1s(k)

@b½NS

h2s(k)

@x(k)

h2s(k)

@y(k)

h2s(k)

@z(k)

h2s(k)

@ _x(k)

h2s(k)

@ _y(k)

h2s(k)

@ _z(k)

h2s(k)

@b²1

h2s(k)

@b²1

h2s(k)

@b½1
¢ ¢ ¢ h2s(k)

@b²NS

h2s(k)

@b²NS

h2s(k)

@b½NS

37775
(35)

The appropriate partial derivatives with respect to the

target positions and the bias terms can be found in

[3], and the partial derivatives with respect to the target

velocity components are:

@h1s(k)

@ _xs(k)
=¢t

@h1s(k)

@xs(k)
(36)

@h1s(k)

@ _ys(k)
= 0 (37)

@h1s(k)

@ _zs(k)
=¢t

@h1s(k)

@zs(k)
(38)

@h2s(k)

@ _xs(k)
=¢t

@h2s(k)

@xs(k)
(39)

@h2s(k)

@ _ys(k)
=¢t

@h2s(k)

@ys(k)
(40)

@h2s(k)

@ _zs(k)
=¢t

@h2s(k)

@zs(k)
: (41)

F. Initialization

Assuming that the biases are null, the LOS measure-

ments from the first and the second sensor ®1(k), ®2(k)

and ²1(k) can be used to solve for each initial Cartesian

target position, in ECI coordinates, using (42)—(44). The

two Cartesian positions formed from (42)—(44) can then

be differenced to provide an approximate velocity. This

procedure is analogous to two-point differencing [2] and

will provide a full six-dimensional state to initialize the

ILS algorithm.

x(k)0 =
»2(k)¡ »1(k)+ ³1(k) tan®1(k)¡ ³2(k) tan®2(k)

tan®1(k)¡ tan®2(k)
(42)

y(k)0 =
tan®1(k)(»2(k)+ tan®2(k)(³1(k)¡ ³2(k)))¡ »1(k) tan®2(k)

tan®1(k)¡ tan®2(k)
(43)

z(k)0 = ´1(k)+ tan²1(k)

¯̄̄̄
(»1(k)¡ »2(k))cos®2(k) + (³2(k)¡ ³1(k))sin®2(k)

sin(®1(k)¡®2(k))
¯̄̄̄

(44)

G. Cramér-Rao Lower Bound

In order to evaluate the efficiency of the estimator,

the CRLB must be calculated. The CRLB provides a

lower bound on the covariance matrix of an unbiased

estimator as [2]

Ef(μ¡ μ̂)(μ¡ μ̂)0g ¸ J(μ)¡1 (45)

where J is the FIM, μ is the true parameter vector to be
estimated, and μ̂ is the estimate. The FIM is

J(μ) = Ef[rμ ln¤(μ)][rμ ln¤(μ)]
0gjμ=μtrue (46)

where the log-likelihood function is

¸(μ)
¢
=ln¤(μ) (47)

J(μ) =H 0R¡1Hjμ=μtrue (48)

where H is the Jacobian matrix (34). Since μtrue is not
available in practice, J will be evaluated at the estimate,

and, as it is shown later, the two results are practically

the same.

H. Statistical Test for Efficiency with Monte Carlo Runs

Another measure of performance involves weight-

ing the estimate error by the inverse of the covari-

ance matrix P. The normalized estimation error squared

(NEES) for the parameter μ under the hypothesis of ef-

ficiency, i.e.,

P = J¡1 (49)

is defined as

²μ = (μ¡ μ̂)0P¡1(μ¡ μ̂) = (μ¡ μ̂)0J(μ)(μ¡ μ̂) (50)

and is chi-square distributed with nμ (the dimension of

μ) degrees of freedom, that is,

²μ » Â2nμ (51)

The hypothesis test for efficiency whether (51) can

be accepted, as discussed in [2] and outlined next.

The NEES is used in simulations to check whether the

estimator is efficient, that is, the errors are statistically

consistent with the covariance given by the CRLB–this

is the efficiency check. Thus the efficiency check of

the estimator (in simulation–because this is the only

STATISTICAL EFFICIENCY OF SIMULTANEOUS TARGET STATE AND SENSOR BIAS ESTIMATION 7



Fig. 2. Target and satellite trajectories for the two-sensor case

situation where μ is available) consists of verifying

whether (51) holds. The practical procedure to check the

estimator efficiency is using the sample average NEES

from N independent Monte Carlo runs defined as

²̄μ =
1

N

NX
i=1

²iμ (52)

The quantity N²̄μ is chi-square distributed with Nnμ
degrees of freedom.

Let Q be the type I error probability of the test.

The 1¡Q two-sided probability region for N²̄μ is the

interval [²01,²
0
2].

²01 = Â
2
Nnμ

μ
Q

2

¶
(53)

²02 = Â
2
Nnμ

μ
1¡ Q

2

¶
(54)

where in view of the division by N in (52), one has

²i =
²0i
N

(55)

Thus, if the estimator is efficient, one has to have

Pf²̄μ 2 [²01,²02]g= 1¡Q (56)

III. SIMULATIONS
In this paper we used a hypothetical scenario to test

our new methodology. The missile and satellite trajec-

tories are generated using System Tool Kit (STK). The

sensor satellites are in a circular orbits of 600 km and

700 km altitude with 0±, 60± degrees inclination, re-
spectively. The target modeled represents a long range

ballistic missile with a flight time of about 20 min-

utes. STK provides the target and sensor positions in

three dimensional Cartesian coordinates at 1 s intervals.

The measurement noise standard deviation ¾s (identical

across sensors for both azimuth and elevation measure-

ments, ¾®s = ¾
²
s = ¾s) was assumed to be 30 ¹rad. The

target launch time was chosen so that the satellite sen-

sors were able to follow the missile trajectory through-

out its flight path. As shown in Figure 3, these satellite

orbits enabled maximum visibility of the missile tra-

jectory from multiple angles. The missile and satellite

trajectories displayed in Figure 3 represent 5 minutes

of flight time (exoatmospheric). In order to establish a

baseline for evaluating the performance of our method,

we also ran the simulations without biases and with bi-

ases, but without bias estimation. As discussed in the

previous section, the three sensor biases were roll, pitch

and yaw angle offsets. Table II summarizes the bias val-

ues (in mrad).

In order to test for the statistical efficiency of the es-

timate (of the 12 dimensional vector (15)), the NEES is

used, with the CRLB as the covariance matrix. The sam-

ple average NEES over 100 Monte Carlo runs calculated

using the FIM evaluated at the true bias values, target

8 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 13, NO. 1 JUNE 2018



Fig. 3. Target and satellite trajectories for the two-sensor case

TABLE II

Sensor Biases (mrad).

Ã ½ Á

Sensor 1 5.7596 4.3633 ¡3:8397
Sensor 2 4.8869 5.4105 ¡5:0615

position, and velocity is approximately 11.52, and the

sample average NEES calculated using the FIM evalu-

ated at the estimated biases, target position and velocity

is approximately 11.63 and both fall in the interval given

below. According to the CRLB, the FIM has to be eval-

uated at the true parameter. Since this is not available in

practice, however, it is useful to evaluate the FIM also

at the estimated parameter, the only one available in real

world implementations [12]. The results are practically

identical regardless of which values are chosen for eval-

uation of the FIM. The 95% probability region for the

100 sample average NEES of the 12 dimensional param-

eter vector is [11.20, 12.81]. This NEES is found to be

within this interval and the MLE is therefore statistically

efficient. Table III shows the individual bias component

NEES. The 95% probability region for the 100 sample

TABLE III

Sample average bias NEES (CRLB evaluated at the estimate), for

each of the 6 biases, over 100 Monte Carlo runs.

Biases Ã1 ½1 Á1 Á2 Ã2 ½2

NEES 1.0326 0.9723 1.0239 1.0248 1.2009 0.8922

average single component NEES is [0.74, 1.29]. These

NEES are found to be within this interval.

The RMS errors for the target position and veloc-

ity are summarized in Table IV. In this table, the first

estimation scheme was established as a baseline using

bias-free LOS measurements to estimate the target po-

sition and velocity. For the second scheme, we used

biased LOS measurements but we only estimated target

position and velocity. In the last scheme, we used biased

LOS measurements and we simultaneously estimated

the target position, velocity, and sensor biases. Once

again, bias estimation yields significantly improved tar-

get RMS position and velocity errors in the presence of

biases.

Each component of μ should also be individually
consistent with its corresponding ¾CRLB (the square root
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TABLE IV

Sample average RMSE for the target position (m) and velocity

(ms¡1), over 100 Monte Carlo runs, for the 3 estimation schemes.

Scheme Position RMSE Velocity RMSE

1 107.44 5.16

2 47,161.10 25,149.32

3 494.49 19.55

TABLE V

Sample average bias (¹rad) RMSE over 100 Monte Carlo runs and

the corresponding bias standard deviation from the CRLB.

RMSE ¾CRLB

Ã1 0.0326 0.0334

½1 0.0239 0.0211

Á1 0.0239 0.0261

Ã2 0.0248 0.0252

½2 0.0099 0.0096

Á2 0.0122 0.0122

of the corresponding diagonal element of the inverse

of FIM). In this case, the sample average bias RMSE

over 100 Monte Carlo runs should be within 15% of its

corresponding bias standard deviation from the CRLB

(¾CRLB) with 95% probability. The utmost limit (“exist-

ing information”) for the scenario considered is around

10—33 ¹rad standard deviation for the bias errors, i,e.,

of the order of ¾s. Table V demonstrates the efficiency

of the individual bias estimates.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm that uses

a target of opportunity for estimation of measurement

biases together with target state. The first step was for-

mulating a general bias model for synchronized space-

based optical sensors at known locations. The associa-

tion of measurements is assumed to be perfect. Based

on this, we used an ML approach that led to a batch

nonlinear least-squares estimation problem for simulta-

neous estimation of the 3D Cartesian position and ve-

locity components of the target of opportunity and the

angle measurement biases of the sensors. The bias es-

timates, obtained via ILS, were shown to be unbiased

and statistically efficient. For future work we plan to

relax the no process noise assumption, reformulate the

problem and again evaluate the statistical efficiency of

the algorithm.
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